
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 290 (2006) 1040–1070
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Dynamic behavior comparison of passive hydraulic engine
mounts. Part 1: Mathematical analysis

J. Christopherson, G. Nakhaie Jazar�

Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105, USA

Received 4 October 2004; received in revised form 20 April 2005; accepted 6 May 2005

Available online 10 August 2005
Abstract

This paper investigates the linear and nonlinear modeling aspects of two distinct types of passive
hydraulic engine mounts. The two mounts considered here within differ by the means in which the
decoupler is used to control the amplitude-dependent behavior of the hydraulic mount. Both of the mounts
decoupler action introduces nonlinearities into the system; however, one mount illustrates parametric-type
behavior. Because one mount exhibits parametric behavior the energy-rate method is used to determine the
stability of the system. The linear and nonlinear models are directly compared with each other in a
frequency domain for each respective mount, and then the nonlinear models are compared directly against
each other to ascertain a comparison between mount designs, again in a frequency domain.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic mounts have been used in the automotive industry since the mid-1980s as a means to
provide an adaptive vibration isolation system to meet increasing customer demand for quieter
and smoother riding vehicles [1]. More specifically, the hydraulic mount was introduced to
provide a dual damping mode passive vibration isolator to control high-amplitude, low-frequency
road-induced vibrations and low-amplitude, high-frequency engine-induced vibrations [2]. The
hydraulic mount meets the requirements for a dual damping mode isolator by use of a device
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
AB decoupler disk piston area
Ap equivalent piston area
Br equivalent rubber damping coefficient
B equivalent viscous damping coefficient
M effective fluid column mass
Kr upper structure stiffness
C volumetric compliance
K sum of inverse compliance
P fluid chamber pressure
Q volumetric flow rate
fT transmitted force
FT amplitude of transmitted force
Kdyn dynamic stiffness
f phase lag
r nondimensional amplitude
R dimensional amplitude
X excitation amplitude

o excitation frequency
t time
E nonlinear coefficient
D decoupler gap size
s Laplace transformation variable
j complex variable
C any integer
U energy
T period of oscillation

Subscripts

i inertia track
d decoupler
fd floating-decoupler
dd direct-decoupler
dyn dynamic
sys system
atm atmospheric
1,2,3 fluid control volume number
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referred to as the decoupler in conjunction with a passage known as the inertia track. In its most
common form the hydraulic mount is as illustrated in Fig. 1, and consists of two fluid-filled
chambers separated by a metallic plate containing the decoupler and inertia track. The decoupler
is simply a disk that floats in the cage provided by the metallic plate, and acts as a mechanical
switch to either allow fluid through or block fluid dependent upon the amplitude of excitation [3].
decoupler

lower
chamber

inertia
track

upper
chamber

rubber

bottom rubber
compliance

cageplate
Qd

∆

Fig. 1. Illustration of a floating-decoupler-type hydraulic mount.
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If the decoupler is closed the fluid is forced to flow through the inertia track due to the relative
motion of the system (motion of the engine and the motion of the vehicle structure), and when the
fluid is forced through the inertia track the overall damping coefficient of the mount increases due
to the highly restricted fluid motion through the channel. However, if the decoupler remains open
the fluid motion between chambers is relatively unrestricted; therefore, the overall damping of
the mount decreases. Hence, this design of engine mount relies upon determining the
appropriate combination of inertia track size and decoupler gap size (see Fig. 1) to control the
mount behavior [4].
An alternative to the aforementioned hydraulic mount is illustrated in Fig. 2 and fixes the

decoupler directly to the engine side of the mount; therefore, the decoupler motion is controlled
directly by the input excitation provided by the engine and vehicle structure. To accommodate the
decoupler in this type mount an extra fluid chamber is introduced and it is from this chamber that
the inertia track exits (see Fig. 2). This additional fluid chamber, labeled the middle chamber,
provides a means by which to ensure activity of the inertia track, as opposed to relying on fluid
pressure differentials to close the decoupler, to provide additional damping from the inertia track.
Therefore, the overall damping of this type of mount is less sensitive to decoupler gap size;
however, the mount becomes increasingly dependent upon the inertia track geometry. This is not
to say that the decoupler gap size and geometry are unimportant, quite the contrary; however, the
inertia track is more prevalent as compared with the previous design. In addition, the decoupler
does provide additional damping to the system when it approaches its cage bounds noting that as
the decoupler moves it forces fluid out and around it (see Fig. 2); therefore, as the decoupler
approaches the cage bounds the fluid resistance associated with it changes as a function of
the decoupler position. This motion provides additional damping and increased nonlinearity to
this type of mount.
This paper is the first of a two part series describing the mathematical modeling and finite

element modeling and results for the two distinct types of passive hydraulic engine mounts
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Fig. 2. Illustration of a direct-decoupler-type hydraulic mount.
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previously discussed. As stated the engine mounts considered in this series utilize two different
means of controlling the amplitude-sensitive behavior of the hydraulic mount. The standard
method of controlling the amplitude-sensitive behavior is through the device of a mechanical
switching device introduced as the floating-decoupler (see Fig. 1). An alternative method is to
directly fix the decoupler to the input of the engine mount (see Fig. 2) thereby directly controlling
the decoupler motion. Both of the aforementioned mounts are currently used in automotive
applications and models of each mount may be seen in Figs. 3 and 4.
Fig. 3. Direct-decoupler hydraulic mount.
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Fig. 4. Floating-decoupler hydraulic mount.

J. Christopherson, G.N. Jazar / Journal of Sound and Vibration 290 (2006) 1040–10701044
The passive hydraulic mount has been thoroughly studied by many researchers; however, to
date the decoupler dynamics present several modeling difficulties. Flower was the first to analyze
the dynamic behavior of the hydraulic mount through the use of linear models in which the
decoupler was either always open or always closed [1]. Singh et al. [5] and Kim and Singh [6] have
illustrated the applicability of such modeling techniques for limited frequency domains thereby
introducing the limitation of the linear modeling techniques in that they never consider the true
decoupler switching mechanism. To remedy this piecewise linear models are considered in which
the decoupler is treated as open until the decoupler disk itself reaches the cage bounds which it
then is modeled as being completely closed [3]. The disadvantage of such modeling techniques is
they are discontinuous in nature and provide large nonlinearities which can be difficult to deal
with mathematically. To this end several researchers have used various nonlinear models in which
the decoupler behavior is considered as a continuous function and the possibility for leak flow
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through the decoupler when closed is allowed [2,6–8]. Of the nonlinear models, the simplest model
uses a cubic nonlinear function to alter the resistance to fluid flow through the decoupler [7,8]. In
addition to considering decoupler nonlinearities Geisberger et al. [2] and Adiguna et al. [9] have
used experimental approaches to determine not only the decoupler flow characteristics, but also
the inertia track flow characteristics. Adiguna et al. [9] have also experimentally shown the
possibility of vacuum formation within the hydraulic mount as a source for further nonlinearities.
Some recent research has been devoted to finding methods by which to optimize the design of the
passive-type hydraulic mount by way of using some of the aforementioned nonlinear modeling
techniques. Christopherson and Jazar [4] have proposed and illustrated an optimization routine
based on a rms averaging of the frequency domain behavior of the hydraulic mount that
converges to provide real results [4]. In addition to the analytical modeling approaches utilized by
the aforementioned researchers Shanngguan and Lu [10] have illustrated the applicability of
nonlinear finite elements in conjunction with fluid–structure interaction to the analysis of
hydraulic mounts for use as yet another design tool.
However, in all the aforementioned research no one to the authors’ knowledge has published

significant information regarding direct-decoupler-type passive hydraulic engine mount designs as
illustrated in Figs. 2 and 3 even though such designs are being used in modern automotive
applications. This series of papers addresses the modeling of one such design of an alternative
passive hydraulic mount design even though other passive hydraulic mount designs do exist, this
paper limits itself to a comparison between the two designs previously discussed.
2. Mathematical model

2.1. Linear models

Linear models are first developed to describe the frequency domain behavior of both hydraulic
mounts. These models neglect the decoupler closing action for either mount considering the
decoupler an open path. Figs. 5 and 6 illustrate the lumped parameter models utilized to describe
the floating-decoupler and direct-decoupler-type mounts.
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Fig. 5. Lumped parameter model (floating-decoupler).
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Fig. 6. Lumped parameter model (direct-decoupler).
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2.1.1. Floating-decoupler mount

Considering the lumped parameter model illustrated in Fig. 5 as two separate control volumes
and allowing the flow through the inertia track and decoupler to be modeled with a constant
velocity field across the cross-section of the channel (plug flow) the flow rate equations for the
decoupler and inertia track may be written as follows:

Qd ¼ Ad _xd , (1)

Qi ¼ Ai _xi. (2)

Again considering the two control volumes illustrated in Fig. 5 the conservation of momentum
and fluid continuity equations may be written as follows:

Md €xd þ Bd _xd ¼ Ad P1 � P2ð Þ, (3)

Mi €xi þ Bi _xi ¼ Ai P1 � P2ð Þ, (4)

AP _x ¼ Qd þQi þ C1
_P1 � _Patm

� �
, (5)

Qd þQi ¼ C2
_P2 � _Patm

� �
. (6)

Eqs. (1)–(6) fully define the linear model of the floating-decoupler engine mount assuming the
decoupler is constantly open. By combining the aforementioned equations and noting that
atmospheric pressure is approximately constant over time the following system of second order
ordinary equations are realized:

Md 0

0 Mi

" #
€xd

€xi

( )
þ

Bd 0

0 Bi

" #
_xd

_xi

( )
þ

A2
dK AdAiK

AdAiK A2
i K

" #
xd

xi

( )
¼

Ap

C1

Ad

Ai

( )
x, (7)



ARTICLE IN PRESS

J. Christopherson, G.N. Jazar / Journal of Sound and Vibration 290 (2006) 1040–1070 1047
where

K ¼
C1 þ C2

C1C2
; x ¼ X sin otð Þ.

To obtain a solution to Eq. (7) the following Laplace transformation will be introduced:

s2
Md 0

0 Mi

" #
þ s

Bd 0

0 Bi

" #
þ

A2
dK AdAiK

AdAiK A2
i K

" # !
X d sð Þ

X i sð Þ

( )
¼

Ap

C1

Ad

Ai

( )
X sð Þ. (8)

Solving Eq. (8) yields the desired frequency domain solutions for the amplitude of the decoupler
and inertia track fluid column positions by allowing s ¼ jo. Therefore, the solutions obtained by
Eq. (8) (see Appendix A) may be expressed in compact notation as follows:

X d joð Þ

X i joð Þ

( )
¼

zd oð Þ

zi oð Þ

( )
þ j

Zd oð Þ

Zi oð Þ

( )
. (9)

Using Fig. 5, an equation may be developed by applying Newton’s second law to the hydraulic
mount to determine the force transmitted as follows:

FT ¼ KrX joð Þ þ joBrX joð Þ þ ApP1 joð Þ. (10)

Using Eq. (9) in conjunction with the continuity equation expressed in Eq. (5), Eq. (10) may be
written as follows:

FT ¼
KrC1X þ Ap ApX � Adzd � Aizi

� �
C1

þ j BroX �
Ap AiZi þ AdZdð Þ

C1

� �
. (11)

By knowing the transmitted force as expressed in Eq. (11) the dynamic stiffness may be expressed
in a real frequency domain by considering the magnitude of the complex function. The phase lag
of the system may also be considered by computing the angle of the complex function as follows:

Kdyn ¼
FT

X

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KrC1X þ Ap ApX � Adzd � Aizi

� �
C1X

� �2

þ Bro�
Ap AiZi þ AdZdð Þ

C1X

� �2
s

, (12)

fsys ¼ arctan
BrXo� Ap AiZi þ AdZdð Þ

KrC1X þ Ap ApX � Adzd � Aizi

� �
 !

. (13)

2.1.2. Direct-decoupler mount
As with the floating-decoupler mount, the direct-decoupler mount will be analyzed using the

lumped parameter approach illustrated in Fig. 6. There are two significant differences between the
two mounts. First, the direct attachment of the decoupler to the input of the engine mount,
hence the name, and then the inclusion of a third control volume (labeled as the middle
chamber) to allow motion of the decoupler. Regardless of the differences between the two
mounts the process for analysis is similar. First, the flow rate through both the decoupler and
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inertia track is considered.

Qd ¼ Ad _xd , (14)

Qi ¼ Ai _xi. (15)

Next, the fluid momentum and continuity equations may be written based upon the lumped
parameter model illustrated in Fig. 6 as follows:

Md €xd þ Bd _xd ¼ Ad P1 � P2ð Þ, (16)

Mi €xi þ Bi _xi ¼ Ai P2 � P3ð Þ, (17)

Ap � AB

� �
_x ¼ Qd þ C1

_P1 � _Patm

� �
, (18)

Qd þ AB _x ¼ Qi þ C2
_P2 � _P3

� �
, (19)

Qi þ C2
_P2 � _P3

� �
¼ C3

_P3 � _Patm

� �
. (20)

Using Eqs. (14)–(20) the system of governing linear ordinary equations are written as follows:

Md 0

0 Mi

" #
€xd

€xi

( )
þ

Bd 0

0 Bi

" #
_xd

_xi

( )
þ

A2
dK �

AdAi

C2

�
AdAi

C2

A2
i

C2

2
6664

3
7775

xd

xi

( )
¼

Ad

Ap

C1
� ABK

� �
AiAB

C2

8>>><
>>>:

9>>>=
>>>;

x,

(21)

where

K ¼
1

C1
þ

1

C2
þ

1

C3
; x ¼ X sin otð Þ. (22)

As with the floating-decoupler mount, a Laplace transformation will be introduced to solve Eq.
(21) for the frequency response functions as

s2
Md 0

0 Mi

" #
þ s

Bd 0

0 Bi

" #
þ

A2
dK �

AdAi

C2

�
AdAi

C2

A2
i

C2

2
6664

3
7775

0
BBB@

1
CCCA

X d sð Þ

X i sð Þ

( )
¼

Ad

Ap

C1
� ABK

� �
AiAB

C2

8>>><
>>>:

9>>>=
>>>;

X sð Þ.

(23)

Solving Eq. (23) yields the desired frequency domain solutions for the amplitude of the decoupler
and inertia track fluid column positions by allowing s ¼ jo. Therefore, the solutions obtained by
Eq. (23) (see Appendix A) may be expressed in compact notation as follows:

X d joð Þ

X i joð Þ

( )
¼

zd oð Þ

zi oð Þ

( )
þ j

Zd oð Þ

Zi oð Þ

( )
. (24)
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Again by the use of Newton’s second law and the lumped parameter model (Fig. 6), the
transmitted force equation may be written as follows:

FT ¼ KrX joð Þ þ joBrX joð Þ þ ApP1 joð Þ þ AB P2 joð Þ � P1 joð Þð Þ. (25)

Separating Eq. (25) into real and imaginary components the transmitted force equation may be
written as follows:

FT ¼ f T þ jgT , (26)

where

f T ¼ Kr þ A2
BK þ

Ap

C1
Ap � 2AB

� �� �
X þ Ad ABK �

Ap

C1

� �
zd �

ABAi

C2
zi,

gT ¼ BrXo2 þ Ad ABK �
Ap

C1

� �
Zd �

ABAi

C2
Zi.

Then by use of Eq. (26) the dynamic stiffness and phase angle equations may be written as
follows:

Kdyn ¼
FT

X

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f T

X

� �2

þ
gT

X

� �2s
, (27)

f ¼ arctan
gT

f T

� �
. (28)

2.2. Nonlinear models

The nonlinear equations of motion are developed in essentially the same manner for both
mounts as the linear model. The difficulty and novelty of the nonlinear model for either mount is
describing the decoupler closing event. In the floating-decoupler mount the pressure difference
between chambers forces closing and opening of the decoupler; however, in the direct-decoupler
mount the decoupler action is directly controlled by the input. Several nonlinear models have been
utilized by many researchers [2,6–8] in addition to others using piecewise linear models to describe
decoupler behavior [3]. However, the simplest, yet effective, nonlinear model in the literature is the
model proposed by Jazar and Golnaraghi to model the decoupler with a function which changes
the resistance to fluid flow through the decoupler by noting position and velocity of the fluid
within the decoupler [7,8]. This model also allows existence of the leak flow phenomenon
described by Singh et al. [6].

F fd ¼ E
x2

d

D2
_xd , (29)

Fdd ¼ E
x2

D2
_xd . (30)

Eqs. (29) and (30) represent said nonlinear functions for the floating-decoupler and direct-
decoupler mounts, respectively. The primary difference between the two functions is the altering
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of the xd
2 term in Eq. (29) to x2 in Eq. (30) simply because in the direct-decoupler mount the

decoupler motion is controlled directly by the input excitation, not by the fluid motion as with the
floating-decoupler.
2.2.1. Floating-decoupler mount

To determine the nonlinear equations of motion for the floating-decoupler mount the process is
repeated from the linear model with the exception that the momentum equation in Eq. (3). The
required change in this equation is the effect of the decoupler closing described by Eq. (29). With
this change the nonlinear equations of motion may be written as follows:

Md 0

0 Mi

" #
€xd

€xi

( )
þ

Bd 0

0 Bi

" #
_xd

_xi

( )
þ

A2
dK AdAiK

AdAiK A2
i K

" #
xd

xi

( )
þ Ffd

1

0

	 

¼

Ap

C1

Ad

Ai

( )
x.

(31)

Because Eq. (31) is nonlinear an exact solution describing the fluid behavior in the frequency
domain is impossible; therefore, an approximate closed form solution is sought for Eq. (31) by use
of the averaging method. To accomplish such type of solution it becomes necessary to introduce a
series of nondimensional parameters by first transforming the time domain the equations are
expressed in as a function of the primary linear resonant frequency as follows:

t ¼ Ot; O2 ¼
A2

dK

Md

; xd ¼ Dyd ; xi ¼ Dyi; x ¼ Dy. (32)

By using the nondimensional parameters in Eq. (32) the equations of motion in Eq. (31) may be
written as follows:

1 0

0 1

� �
y00d

y00i

( )
þ

Bd þ Ey2
d

MdO
0

0
Bi

MiO

2
6664

3
7775

y0d

y0i

( )
þ

1
Ai

Ad

AiMd

AdMi

A2
i Md

A2
dMi

2
6664

3
7775

yd

yi

( )
¼

Ap

C1KAd

1
AiMd

AdMi

8<
:

9=
;y,

(33)

where

y ¼ Y sin
ot
O

� �
.

To make the equations of motion in Eq. (33) suitable for perturbation analysis the following
nondimensional parameters are introduced:

w ¼
o
O
; a ¼

Ai

Ad

; m ¼
Mi

Md

; f ¼
Ap

C1KAd

; e ¼
E

MdO
; zd ¼

Bd

MdO
; zi ¼

Bi

MiO
. (34)
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Using the nondimensional parameters in Eq. (34) the equations of motion in Eq. (33) may be
expressed as follows:

1 0

0 1

� �
y00d

y00i

( )
þ

zd þ ey2d 0

0 zi

" #
y0d

y0i

( )
þ

1 a

a

m

a2

m

2
4

3
5 yd

yi

( )
¼ fY

1
a

m

( )
sin wtð Þ. (35)

It now becomes convenient to introduce a small parameter as to ensure the forcing amplitude and
nonlinearity is small in magnitude

� ¼ a; �dd ¼ zd ; �di ¼ zi; �q ¼ e; �g ¼ fY ; n ¼
a

m
. (36)

Using the parameters in Eq. (36) the equations of motion in Eq. (35) may be written as follows:

y00d þ � dd þ qy2
d

� �
y0d þ yd þ �yi ¼ �g sin wtð Þ, (37)

y00i þ �diy
0
i þ nyd þ �nyi ¼ �gn sin wtð Þ. (38)

To utilize the averaging method to determine a solution to Eqs. (37) and (38) solutions are
assumed as a truncated Taylor series to describe the primary harmonic solution neglecting any
sub- or super-harmonic components of the solution while assuming the amplitude and phase
terms may be functions of time as

yd ¼ rd tð Þ sin wtþ fd tð Þ
� �

, (39)

yd ¼ ri tð Þ sin wtþ fi tð Þ
� �

. (40)

The derivatives of the solutions expressed in Eqs. (39) and (40) can be expressed as follows:

y0d ¼ rd tð Þw cos wtþ fd tð Þ
� �

, (41)

y0i ¼ ri tð Þw cos wtþ fi tð Þ
� �

, (42)

y00d ¼ r0d tð Þw cos wtþ fd tð Þ
� �

� rd tð Þw wþ f0d tð Þ
� �

sin wtþ fd tð Þ
� �

, (43)

y00i ¼ r0i tð Þw cos wtþ fi tð Þ
� �

� ri tð Þw wþ f0i tð Þ
� �

sin wtþ fi tð Þ
� �

, (44)

where

r0d tð Þ sin wtþ fd tð Þ
� �

þ rd tð Þf0d tð Þ cos wtþ fd tð Þ
� �

¼ 0, (45)

r0i tð Þ sin wtþ fi tð Þ
� �

þ ri tð Þf
0
i tð Þ cos wtþ fi tð Þ

� �
¼ 0. (46)
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At this point it becomes advantageous to introduce the following parameters

cd ¼ wtþ fd , (47)

ci ¼ wtþ fi. (48)

Substitution of Eqs. (39)–(44) into the equations of motion given in Eqs. (37) and (38) and
utilizing the parameters in Eqs. (47) and (48) allows the governing second-order equations given in
Eqs. (37) and (38) to be written as a system of first-order differential equations that vary slowly
over one period of oscillation (2p) [11] as follows:

r0d ¼ �
1
2
�ddrd �

1
2
�g cos fd

� �
, (49)

rdf
0
d ¼

1
2
�nrd � rd w� 1ð Þ � 1

2
�g sin fd

� �
þ 1

8
�qr3d , (50)

r0i ¼ �
1
2
�diri þ

1
2
�gn cos fi

� �
, (51)

r0i ¼ �
1
2
�diri þ

1
2
�gn cos fi

� �
. (52)

For the solution to the governing equations in Eqs. (37) and (38) to be steady-state in nature the
solutions of Eqs. (49)–(52) cannot vary with time; therefore, the time derivatives in said equations
must vanish. Solving the resulting equations for the trigonometric terms and using the identity
sin2 þ cos2 ¼ 1 yields the following implicit frequency response functions describing the
nondimensional amplitude of the decoupler and inertia track. Using the said trigonometric
terms also allows description of the phase angle equations for both the decoupler and the inertia
track as follows:

rd 8 1� wð Þ þ 4�nþ �qr2d
� �

4�g

� �2

þ
ddrd

g

� �2

¼ 1, (53)

ri 2 1� wð Þ þ �nð Þ

�gn

� �2

þ
diri

gn

� �2

¼ 1, (54)

fd ¼ arctan
8 1� wð Þ þ 4�nþ �qr2d

4�dd

� �
, (55)

fi ¼ �arctan
2 w� 1ð Þ � �n

�di

� �
. (56)

Because the steady-state motion of the solution is nonlinear no explicit frequency domain solution
may be determined. More specifically, because of the possibility for existence of jump
phenomenon-type behavior in nonlinear systems the amplitude of oscillation may not be directly
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expressed as a function of frequency noting that if a jump occurs such a function would be
required to supply two stable solutions and one unstable solution at a specific range of frequency
values. Such behavior cannot be described by a function noting the requirement for a function to
be single-valued; therefore, the frequency response functions must be specified implicitly as in Eqs.
(53) and (54) [11].
To proceed with the frequency response analysis the transmitted force equation may be written

similar to the approach for the linear model. The format has been switched to dimensional
variables for ease of description as follows:

f T ¼ KrX sin otð Þ þ BrXo cos otð Þ þ App1 sin otþ f1

� �
. (57)

Note that the solution being sought after may be expressed by f T ¼ FT sinðotþ fsysÞ; therefore,
after use of the appropriate identities Eq. (57) may be expressed in the frequency domain as
follows:

FT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X KrG1 þ BroG2 þ A2

pp21

� �r
, (58)

fsys ¼ arctan
BrXoþ App1 sin f1

� �
KrX þ App1 cos f1

� �
 !

, (59)

where

G1 ¼ KrX þ 2App1 cos f1

� �
,

G2 ¼ BrXoþ 2App1 sin f1

� �
.

The pressure term in Eqs. (58) and (59) may be defined by using the continuity equation given in
Eq. (5) and the frequency response functions given in Eqs. (53)–(56).

p1o cos otþ f1

� �
¼

o
C1

ApX cos otð Þ � AdRd cos otþ fd

� �
þ AiRi cos otþ fi

� �� �� �
, (60)

where

Rd ¼ Drd ; Ri ¼ Dri.

Using the appropriate trigonometric identities in conjunction with Eq. (60) p1 and f1 may be
expressed as follows:

p1 ¼
1

C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ApXH1 þ AdRdH2 þH3

p
, (61)

f1 ¼ arctan
AdRd sin fd

� �
þ AiRi sin fi

� �
ApX � AdRd cos fd

� �
þ AiRi cos fi

� �� �
 !

, (62)
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where

H1 ¼ ApX � 2AiRi cos fi

� �
,

H2 ¼ AdRd � 2ApX cos fd

� �
,

H3 ¼ A2
i R2

i þ 2AdAiRdRi cos fd � fi

� �
.

Using Eq. (58) the dynamic stiffness equation may be written as follows:

Kdyn ¼
FT

X
¼

1

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X KrG1 þ BroG2 þ A2

p p21

� �r
. (63)
2.2.2. Direct-decoupler mount

The nonlinear model for the direct-decoupler mount can be determined from the linear model,
in the same manner as the nonlinear model for the floating-decoupler mount, simply by adding
the nonlinear decoupler function expressed in Eq. (30) as follows:

Md 0

0 Mi

" #
€xd

€xi

( )
þ

Bd 0

0 Bi

" #
_xd

_xi

( )
þ

A2
dK �

AdAi

C2

�
AdAi

C2

A2
i

C2

2
6664

3
7775

xd

xi

( )
þ Fdd

1

0

( )

¼

Ad

Ap

C1
� ABK

� �
AiAB

C2

8>>><
>>>:

9>>>=
>>>;

x. ð64Þ

Notice, however, that the nonlinearity introduced by the addition of Fdd transforms the equations
of motion into a parametric system of equations. Because the system is parametric there is no
guarantee that for all possible mount configurations there exists a periodic solution. To ensure a
periodic response exists the stability of the system must be analyzed. To accomplish a stability
analysis for a system of parametric differential equations the governing equations should be
transformed into a nondimensional form, similar to the process outlined for the floating-
decoupler mount. After transformation of the equations of motion into a nondimensional form
the energy-rate method should be employed [12]. The output of the energy-rate method is the
stability diagram for the system.
To achieve a nondimensional system of equations a nondimensional time format will be

introduced along with nondimensional position variables in a similar manner to that used for the
floating-decoupler mount

t ¼ Ot; O2 ¼
A2

dK

Md

; xd ¼ Dyd ; xi ¼ Dyi; x ¼ Dy. (65)
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Using the parameters in Eq. (65) the equations of motion given in Eq. (64) may be written as
follows:

1 0

0 1

" #
y00d

y00i

( )
þ

Bd þ Ey2

MdO
0

0
Bi

MiO

2
6664

3
7775

y0d

y0i

( )
þ

1 �
Ai

AdC2K

�
AiMd

AdMiC2K

A2
i Md

A2
dMiC2K

2
66664

3
77775

yd

yi

( )

¼

Ap

AdC1K
�

AB

Ad

AiABMd

A2
dMiC2K

8>>><
>>>:

9>>>=
>>>;

y, ð66Þ

where

y ¼ Y sin
ot
O

� �
.

To further simplify the governing equations in Eq. (66) the following nondimensional parameters
are introduced:

w ¼
o
O
; a ¼

Ai

Ad

; m ¼
Mi

Md

; f ¼
Ap

C1KAd

; e ¼
E

MdO
; zd ¼

Bd

MdO
,

zi ¼
Bi

MiO
; a ¼

AB

Ad

; u ¼
1

C2K
. ð67Þ

Using the parameters in Eq. (67) the governing equations in Eq. (66) may be written as follows:

1 0

0 1

" #
y00d

y00i

( )
þ

zd þ eY 2 sin2 wtð Þ 0

0 zi

" #
y0d

y0i

( )
þ

1 �au

�
au

m

a2u

m

2
64

3
75 yd

yi

( )

¼

f � a
aau

m

8<
:

9=
;Y sin wtð Þ. ð68Þ

To make Eq. (68) suitable for use by the energy-rate method the following terms are introduced:

� ¼ a; �dd ¼ zd ; �di ¼ zi; n ¼
a

m
; �g ¼ fY ,

�h ¼ aY ; �g ¼ eY 2. ð69Þ

Using the parameters in Eq. (69) the final form of the governing equations may be written as
follows:

y00d þ � dd þ g sin2 wtð Þ
� �

y0d þ yd � �uyi ¼ � g� hð Þ sin wtð Þ, (70)

y00i þ �diy
0
i � nuyd þ �nuyi ¼ �nhu sin wtð Þ. (71)
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To analyze the stability of the system governed by Eqs. (70) and (71) it becomes advantageous to
introduce a small term to perturb the steady-state solution as

yd ¼ yd0 þ zd , (72)

yi ¼ yi0 þ zi. (73)

Eqs. (72) and (73) illustrate the steady-state solution (yd0 and yi0) perturbed by small parameters
zd and zi. Substitution of these equations into Eqs. (70) and (71) yields the following:

y00d0 þ z00d þ � dd þ g sin2 wtð Þ
� �

y0d0 þ z0d
� �

þ yd0 þ zd � �u yi0 þ zi

� �
¼ � g� hð Þ sin wtð Þ, (74)

y00i0 þ z00i þ �di y0i0 þ z0i
� �

� nu yd0 þ zd

� �
þ �nu yi0 þ zi

� �
¼ �nhu sin wtð Þ. (75)

Noting that yd0 and yi0 represent steady-state solutions to Eqs. (70) and (71), Eqs. (74) and (75)
may be simplified and written as follows:

z00d þ � dd þ g sin2 wtð Þ
� �

z0d þ zd � �uzi ¼ 0, (76)

z00i þ �diz
0
i � nuzd þ �nuzi ¼ 0. (77)

The energy-rate method may be applied to Eqs. (76) and (77) by defining the rate of change of the
total energy of the system [12]. Because this system contains two dof the energy-rate equations
must be determined for each respective dof

U 0d ¼ �z0d � dd þ g sin2 wtð Þ
� �

z0d � �uzi

� �
, (78)

U 0i ¼ �z0i �diz
0
i � nuzd

� �
. (79)

To determine whether or not a periodic solution exists for a specific combination of w and g the
energy-rate equations given in Eqs. (78) and (79) are integrated over one period [12].

Ud; avg ¼
1

T

Z T

0

U 0d dt, (80)

Ui; avg ¼
1

T

Z T

0

U 0i dt, (81)

where

T ¼
2p

Zo1 þ wo2
; o1 ¼ 1; o2 ¼

ffiffiffiffiffiffiffiffiffi
�nhu
p

; Z; w 2 C.

The results of the integration in Eqs. (80) and (81) are illustrated in Figs. 7 and 8.
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Fig. 7. Energy integral surface relating to the decoupler dof.

Fig. 8. Energy integral surface relating to the inertia track dof.
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Figs. 7 and 8 illustrate the energy integral surface that is a direct result of the energy-rate
method. Wherever said integral is less than zero the system exhibits stable behavior. Wherever the
energy integral surface equals zero exactly the system exhibits perfectly periodic behavior, and if
the energy integral surface is positive the system exhibits unstable behavior. Because both surfaces
illustrated in Figs. 7 and 8 lie completely below the zero plane they are everywhere stable for the
combination of parameters investigated. Notice, however, that only two parameters are
investigated while the equations of motion contained several more parameters. The parameters
w and g were utilized as they directly relate to the parametric system behavior whereas any other
parameters do not (see Table 1 for property values).
Knowing the direct-decoupler mount is stable suggests that a periodic-type response is possible,

and assuming that such a solution can be obtained a frequency response should be obtainable for
this mount. With that said the averaging method is applied to the governing equations by
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Table 1

Values for hydraulic mount

Symbol Floating-decoupler Direct-decoupler Unit

Ai 5.72E�5 5.72E�5 m2

Ad 2.30E�3 2.30E�3 m2

Ap 5.027E�3 5.027E�3 m2

AB — 3.393E�3 m2

Bi 2.90 2.90 N s/m

Bd 4.83E�3 4.83E�3 N s/m

Br 2000 2000 N s/m

C1 4.60E�10 4.60E�10 m5/N

C2 4.60E�8 4.60E�9 m5/N

C3 — 4.60E�8 m5/N

K 2.196E9 2.413E9 N/m5

Kr 266E3 266E3 N/m

Mi 0.37E�2 0.37E�2 kg

Md 2.645E�2 2.645E�2 kg

E 2.9095 2.9095 —

D 1.0E�3 1.0E�3 m

X 1.0E�3 1.0E�3 m

Z — 1 —

w — 1 —
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introducing the following assumed solutions to the steady-state motion:

yd ¼ ad tð Þ sin wtð Þ þ bd tð Þ cos wtð Þ, (82)

yi ¼ ai tð Þ sin wtð Þ þ bi tð Þ cos wtð Þ. (83)

Using Eqs. (82) and (83) the time derivatives of the system may be expressed as follows:

y0d ¼ w ad tð Þ cos wtð Þ � bd tð Þ sin wtð Þð Þ, (84)

y0i ¼ w ai tð Þ cos wtð Þ � bi tð Þ sin wtð Þð Þ, (85)

y00d ¼ w a0d tð Þ cos wtð Þ � b0d tð Þ sin wtð Þ � w ad tð Þ sin wtð Þ þ bd tð Þ cos wtð Þð Þ
� �

, (86)

y00i ¼ w a0i tð Þ cos wtð Þ � b0i tð Þ sin wtð Þ � w ai tð Þ sin wtð Þ þ bi tð Þ cos wtð Þð Þ
� �

, (87)

where

a0d tð Þ sin wtð Þ þ b0d tð Þ cos wtð Þ ¼ 0, (88)

a0i tð Þ sin wtð Þ þ b0i tð Þ cos wtð Þ ¼ 0. (89)

The assumed solutions in Eqs. (82) and (83) in conjunction with the time derivatives defined in
Eqs. (84)–(87) are now substituted into Eqs. (70) and (71). By using the resulting expressions in
conjunction with Eqs. (88) and (89) a system of first-order differential equations may be obtained.
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Assuming the solution is slowly varying over one period of oscillation the system of equations
may be written as follows:

a0d ¼
1

8w
4bd w2 � 1
� �

þ 4�ubi � �adw 4dd þ gð Þ
� �

, (90)

b0d ¼
1

8w
4�hþ 4ad 1� w2

� �
� �bdw 4dd þ 3gð Þ � 4�uai � 4�g

� �
, (91)

a0i ¼
1

2w
bi w2 � �nu
� �

� �diaiwþ nubd

� �
, (92)

b0i ¼
1

2w
ai �nu� w2
� �

� nuad � �dibiw� �hnu
� �

. (93)

Noting that for a steady-state solution the time derivatives in Eqs. (90)–(93) must be zero;
therefore, after solving for the amplitude terms (ad, bd, ai, bi) the frequency response functions for
the system may be written as follows:

rd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

d þ b2d

q
, (94)

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þ b2i

q
, (95)

fd ¼ arctan
bd

ad

� �
, (96)

fi ¼ arctan
bi

ai

� �
. (97)

Eqs. (94) and (95) are the frequency response functions for the amplitude of the fluid column
motion and Eqs. (96) and (97) define the phase lag for the decoupler and inertia track.

f T ¼ KrX sin otð Þ þ BrXo cos otð Þ þ App1 sin otþ f1

� �
þ ABo p2 sin otþ f2

� �
� p1 sin otþ f1

� �� �
. ð98Þ

As before a solution is sought as f T ¼ FT sinðotþ fsysÞ; therefore, after using the appropriate
identities the transmitted force may be described in the frequency domain as follows:

FT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrXoð Þ

2
� 2BrXoS1 þ KrXð Þ

2
� 2KrXS2 � A2

BS3 þ 2ABApp1S4 þ App1

� �2q
, (99)

fsys ¼ arctan
BrXo� S1

KrX � S2

� �
, (100)

where

S1 ¼ AB p1 sin f1

� �
� p2 sin f2

� �� �
� App1 sin f1

� �
,

S2 ¼ AB p1 cos f1

� �
� p2 cos f2

� �� �
� App1 cos f1

� �
,
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S3 ¼ 2p1p2 cos f2 � f1

� �
� p21 � p2

2,

S4 ¼ p2 cos f2 � f1

� �
� p1.

The pressure terms in Eqs. (99) and (100) may be expressed as follows:

p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AdRdJ1 þ X 2J2

p
C1

, (101)

p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABXð Þ

2J3 þ 2ABX C2 þ C3ð ÞJ4 þ AdRdð Þ
2J3 � 2AdAiRdRiJ5 þ AiRiC3ð Þ

2
q

C2C3
, (102)

f1 ¼ �arctan
AdRd cos fd

� �
þ X AB � Ap

� �
AdRd sin fd

� �
 !

, (103)

f2 ¼ �arctan
C2 þ C3ð Þ ABX þ AdRd cos fd

� �� �
� AiRiC3 cos fi

� �
C2 þ C3ð ÞAdRd sin fd

� �
� AiRiC3 sin fi

� �
 !

, (104)

where

J1 ¼ AdRd þ 2X cos fd

� �
AB � Ap

� �
,

J2 ¼ A2
B þ A2

p � 2ABAp,

J3 ¼ C2
2 þ 2C2C3 þ C2

3,

J4 ¼ AdRd cos fd

� �
C2 þ C3ð Þ � AiRiC3 cos fi

� �
,

J5 ¼ C3 C2 � C3ð Þ cos fd � fi

� �
,

Rd ¼ Drd ; Ri ¼ Dri.

Using Eqs. (99)–(104) the dynamic stiffness equation may be written as follows:

Kdyn ¼
FT

X
¼

1

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrXoð Þ

2
� 2BrXoS1 þ KrXð Þ

2
� 2KrXS2 � A2

BS3 þ 2ABApp1S4 þ App1

� �2q
.

(105)

3. Results

To obtain a good comparison between each mount the parameters describing each mount are
kept constant. Table 1 illustrates the values used for describing each engine mount.
Table 2 illustrates the natural frequencies of the linear models for both engine mounts. From

this table it may be seen that by placing the inertia track in parallel with decoupler decreases the
natural frequencies (floating-decoupler mount) with respect to the direct-decoupler mount in
which the inertia track is in series with the decoupler. In addition, by placing the inertia track in
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parallel with an open decoupler, as in the linear model, the lower natural frequency is practically
zero indicating an almost disconnected state for the degree of freedom corresponding to said
natural frequency. This indicates that the primary means for flow between chambers is through
the decoupler, and the inertia track plays little role in the flow between chambers. Intuitively this
makes sense because the decoupler has a much larger cross-sectional area and damping coefficient
when compared with the inertia track, and therefore should provide the greater flow. However, it
may be seen from Table 2 that by placing the decoupler and inertia track in series (direct-
decoupler mount) forces use of the inertia track; therefore, the resonant frequency corresponding
to the inertia track becomes further from zero indicating an increase in the use of the inertia track.
Figs. 9 and 10 illustrate a comparison between the linear models describing both mounts. Fig. 9

illustrates the force transmitted by each mount across the frequency spectrum whereas Fig. 10
illustrates the system phase lag. Both figures tend to indicate that the direct decoupler mount is
more heavily damped throughout the frequency spectrum, most notably low frequencies, but this
is most easily attributed to the lack of decoupler closing action associated with the floating-
decoupler mount.
Fig. 11 illustrates the decoupler flow rate frequency response for the floating-decoupler mount.

The jump phenomenon commonly associated with nonlinear systems is readily apparent in Fig. 11
around the primary resonant frequency [11].
Fig. 12 illustrates the transmitted force predicted by both the linear and nonlinear models for

the floating-decoupler type mount. Here, the nonlinearity of the system induces a ‘‘frequency
Fig. 9. Linear model transmitted force comparison.

Table 2

Linear model natural frequency comparison

f1 (Hz) f2 (Hz)

Floating-decoupler 105.70 7.59E�8

Direct-decoupler 110.57 2.10
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Fig. 11. Decoupler flow rate (floating-decoupler mount).

Fig. 10. Linear model phase lag comparison.
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island’’ of sorts beyond the maximum resonant frequency. This ‘‘island’’ is illustrated by some
nonlinear systems indicating further existence of unstable solutions. At frequency points where
the island exists the steady-state solution may exist at three separate points where two are stable
solutions and one is unstable, similar to the situation of jump phenomenon.
Fig. 12 also illustrates good agreement below primary resonance between the linear and

nonlinear models. The discrepancy between solutions increases slightly after primary resonance
because of the jump condition associated with the decoupler motion; hence, the appearance of the
frequency island.
Fig. 13 illustrates the dynamic stiffness of the floating-decoupler mount as predicted by both the

linear and nonlinear models. Fig. 14 illustrates the phase lag predicted by both the linear and
nonlinear models.
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Fig. 13. Dynamic stiffness (floating-decoupler mount).

Fig. 12. Transmitted force (floating-decoupler mount).
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Fig. 15 illustrates the decoupler flow rate frequency response for both the linear and nonlinear
models describing the direct-decoupler mount. Here, the additional damping provided by the
addition of the nonlinear function is readily noted by the decreased amplitude near resonance for
the nonlinear model as compared to the linear model.
Fig. 16 illustrates the force transmitted to the base of the direct-decoupler mount as predicted

by both the linear and nonlinear models. Again the linear and nonlinear models agree almost
exactly with the exception of the frequency region surrounding primary resonance (see Table 2).
In this region the additional flow resistance through the closing decoupler provides additional
damping not accounted for in the linear model thereby decreasing the peak amplitude near
resonance (see Fig. 15). In addition, the agreement of the linear and nonlinear models throughout
the frequency domain indicates that the averaging method provided an acceptable solution noting
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Fig. 15. Decoupler flow rate (direct-decoupler mount).

Fig. 14. Phase lag (floating-decoupler mount).
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the linear solution is mathematically exact. However, one point of interest is the accuracy with
which the linear model predicts system behavior throughout the frequency domain.
Fig. 17 illustrates the dynamic stiffness of the direct-decoupler mount again illustrating the

results predicted by both the linear and nonlinear models. Fig. 18 illustrates the overall system
phase lag for the linear and nonlinear models.
Because the nonlinear models consider the effects of the decoupler closing action they most

appropriately model the actual mount behavior; therefore, it is only appropriate that the
nonlinear models for each mount be compared directly as to ascertain information regarding the
benefits of either design.
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Fig. 17. Dynamic stiffness (direct-decoupler mount).

Fig. 16. Transmitted force (direct-decoupler mount).
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Fig. 19 illustrates the flow rate through the decoupler of each mount as predicted by the
nonlinear models. Fig. 20 illustrates the force transmitted by each mount, Fig. 21 illustrates the
dynamic stiffness of each mount, and Fig. 22 illustrates the phase lag for each mount. As
illustrated by Fig. 20 both mounts transmit an approximately equivalent force amplitude to the
chassis of the vehicle throughout the frequency spectrum with the exception of each mounts
respective resonant domains. The direct-decoupler mount exhibits a slight spike in transmissibility
at its primary resonant frequency of �110Hz. Whereas the floating-decoupler mount does not
exhibit such a spike in transmissibility. Instead this mount exhibits a frequency island-type
phenomenon at frequencies above 150Hz. Even though both mounts are approximately
equivalent in isolation capabilities across the frequency spectrum the direct-decoupler mount
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Fig. 19. Decoupler flow rate (nonlinear model comparison).

Fig. 18. Phase lag (direct-decoupler mount).
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exhibits slightly better isolation characteristics below 25Hz whereas the floating-decoupler-type
mount exhibits slightly better behavior in frequencies above resonance. This is most likely due to
the manner in which the inertia track and decoupler are laid out. Recall that in the direct-
decoupler design the inertia track and decoupler are in series thereby forcing the inertia track into
service regardless of the frequency or amplitude of excitation; however, the amount of inertia
track activity depends strongly on the amplitude of excitation. In contrast, the floating-decoupler
design places the decoupler and inertia track in parallel thereby allowing the chamber pressure
differences to dictate the behavior of each component. Notice that during low-frequency
excitations the decoupler is typically forced into a closed position thereby leaving the inertia track
as the only means for appreciable equalization of pressure. However, in the direct-decoupler
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Fig. 21. Dynamic stiffness (nonlinear model comparison).

Fig. 20. Transmitted force (nonlinear model comparison).
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mount the motion of the decoupler actually forces fluid into the inertia track thereby providing
additional damping from not only the inertia track activity but the motion of the decoupler as
well. In the low-frequency region (below �25Hz) the additional damping provided by the direct-
decoupler mount improves the transmissibility of the mount. However, the same may not be said
for higher frequencies above resonance in which a lower overall damping coefficient is desired for
reduced transmissibility. In this region the floating-decoupler mount is superior simply because
the decoupler does not typically bottom out and therefore chamber pressure differences are
equalized via the decoupler and the inertia track is basically short-circuited. Fig. 22 illustrates the
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Fig. 22. Phase lag (nonlinear model comparison).
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above concept quite well in showing the differences in phase lag between the two mounts in the
aforementioned frequency regions.
4. Conclusions

This paper has investigated the frequency domain behavior of two different designs of passive
hydraulic engine mounts by use of appropriate linear and nonlinear models. A design relying on
fluid pressure changes induced by engine/road excitations to control the amplitude-sensitive
component of the mount was compared with a design that controlled the mount behavior by
directly using the engine/road excitations. When both mount are designed in a similar manner
such that the properties of each mount are constant with respect to one another the isolation
characteristics of either mount are similar; however, each respective mount has its advantages and
disadvantages as compared to one another. The direct-decoupler mount exhibits the lowest
transmissibility in low-frequency domains whereas the floating-decoupler mount behaves better as
excitation frequencies increase. In addition to comparing the performance of the two engine
mounts several mathematical difficulties were investigated. The instabilities of the direct-
decoupler-type mount were investigated using a rather new technique described as the energy-rate
method introduced as an effective method to analyze the stability of the parametric system. In
addition, the nonlinear frequency response solutions for both mounts are validated by direct
comparison to their corresponding linear counterparts and noting the similarity between solutions
in regions sufficiently removed from resonance the nonlinear modeling is considered accurate. The
appearance of jump phenomenon related instabilities in the frequency response of the floating-
decoupler mount is shown to exist, which is consistent with published literature on the subject of
nonlinear modeling of hydraulic mounts. In addition, the existence of a frequency island has been
illustrated in the high-frequency region of operation for the floating-decoupler-type hydraulic
mount.
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Appendix A

A.1. Linear model laplace transformations

A.1.1. Floating-decoupler mount (linear model)

X d sð Þ

X i sð Þ

( )
¼

Ap

C1 Dj j

Ad s2Mi þ sBi þ A2
i K

� �
� Ai AdAiKð Þ
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dK

� �
( )

, (A.1)

where

D ¼
s2Md þ sBd þ A2

dK AdAiK

AdAiK s2Mi þ sBi þ A2
i K

" #
.

A.1.2. Direct-decoupler mount (linear model)
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where
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